Abstract

In this work, the shuttle-like CeO2 modified g-C3N4 composite was synthesized and was combined with persulfate (PS) for the efficient photocatalytic degradation of norfloxacin (NOR) under visible light. Scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) emission spectra were used to characterize the structural and optical properties of the as-prepared catalysts. Active species trapping experiments demonstrated that additional sulfate radicals (·SO4-) formed upon the addition of PS which could cooperate with superoxide radicals (O2-), holes (h+) and hydroxyl radicals (OH) to decompose NOR. Singlet oxygen (1O2) was also formed during the reaction and acted as an important active species. The degradation products of NOR were also identified and analyzed by using LC-MS technology, and the possible degradation mechanism and pathways were proposed and discussed. This work indicated that the shuttle-like CeO2 modified g-C3N4 coupled with PS displayed promising applications in the field of pharmaceutical wastewater purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.