Abstract

Faceted grain boundaries can migrate in interesting and unexpected ways. For example, faceted {\Sigma}11 <110> tilt grain boundaries were observed to exhibit mobility values that could be strongly dependent on the direction of migration. In order to understand whether this directionally-anisotropic mobility is a general phenomenon and to isolate mechanistic explanations for this behavior, molecular dynamics simulations of bicrystals evolved under an artificial driving force are used to study interface migration for a range of boundary plane inclination angles and temperatures in multiple face centered cubic metals (Al, Ni, and Cu). We find that directionally-anisotropic mobility is active in a large fraction of these boundaries in Ni and Cu and should therefore impact the coarsening of polycrystalline materials. On the other hand, no such anisotropy is observed in any of the Al boundaries, showing that this behavior is material-dependent. Migration of the faceted boundaries is accomplished through transformation events at facet nodes and incommensurate boundary plane facets, which are termed shuffling modes. Three major shuffling modes have been identified, namely Shockley shuffling, slip plane shuffling, and disordered shuffling. A shift from the first two ordered modes to the third disordered mode is found to be responsible for reducing or removing directionally-anisotropic mobility, especially at the highest temperatures studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.