Abstract
Abstract Self-supervised monocular depth estimation has been widely applied in autonomous driving and automated guided vehicles. It offers the advantages of low cost and extended effective distance compared with alternative methods. However, like automated guided vehicles, devices with limited computing resources struggle to leverage state-of-the-art large model structures. In recent years, researchers have acknowledged this issue and endeavored to reduce model size. Model lightweight techniques aim to decrease the number of parameters while maintaining satisfactory performance. In this paper, to enhance the model’s performance in lightweight scenarios, a novel approach to encompassing three key aspects is proposed: (1) utilizing LeakyReLU to involve more neurons in manifold representation; (2) employing large convolution for improved recognition of edges in lightweight models; (3) applying channel grouping and shuffling to maximize the model efficiency. Experimental results demonstrate that our proposed method achieves satisfactory outcomes on KITTI and Make3D benchmarks while having only 1.6M trainable parameters, representing a reduction of 27% compared with the previous smallest model, Lite-Mono-tiny, in monocular depth estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Artificial Intelligence and Soft Computing Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.