Abstract

To develop a novel acquisition and reconstruction method for magnetization-prepared 3-dimensional multicontrast rapid gradient-echo imaging, using Hankel matrix completion in combination with compressed sensing and parallel imaging. A random k-space shuffling strategy was implemented in simulation and in vivo human experiments at 7 T for 3-dimensional inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. We combined compressed sensing, based on total variation and spatial-temporal low-rank regularizations, and parallel imaging with pixel-wise Hankel matrix completion, allowing the reconstruction of tens of multicontrast 3-dimensional images from 3- or 6-min scans. The simulation result showed that the proposed method can reconstruct signal-recovery curves in each voxel and was robust for typical in vivo signal-to-noise ratio with 16-times acceleration. In vivo studies achieved 4 to 24 times accelerations for inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. Furthermore, the contrast was improved by resolving pixel-wise signal-recovery curves after magnetization preparation. The proposed method can improve acquisition efficiencies for magnetization-prepared MRI and tens of multicontrast 3-dimensional images could be recovered from a single scan. Furthermore, it was robust against noise, applicable for recovering multi-exponential signals, and did not require any previous knowledge of model parameters. Magn Reson Med 79:62-70, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.