Abstract
Synthetic aperture radar (SAR) has been widely applied in both civilian and military fields because it provides high-resolution images of the ground target regardless of weather conditions, day or night. In SAR imaging, the separation of moving and stationary targets is of great significance as it is capable of removing the ambiguity stemming from inevitable moving targets in stationary scene imaging and suppressing clutter in moving target imaging. The newly emerged generative adversarial networks (GANs) have great performance in many other signal processing areas; however, they have not been introduced to radar imaging tasks. In this work, we propose a novel shuffle GAN with autoencoder separation method to separate the moving and stationary targets in SAR imagery. The proposed algorithm is based on the independence of well-focused stationary targets and blurred moving targets for creating adversarial constraints. Note that the algorithm operates in a totally unsupervised fashion without requiring a sample set that contains mixed and separated SAR images. Experiments are carried out on synthetic and real SAR data to validate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.