Abstract
In this work new improvements from a previous approach of an Automatic Design of Artificial Neural Networks applied to forecast time series is tackled. The automatic process to design Artificial Neural Networks is carried out by a Genetic Algorithm. These improvements, in order to get an accurate forecasting, are related with: to shuffle train and test patterns obtained from time series values and improving the fitness function during the global learning process (i.e. Genetic Algorithm) using a new patterns set called validation apart of the two used till the moment (i.e. train and test). The object of this study is to try to improve the final forecasting getting an accurate system. Results of the Artificial Neural Networks got by our system to forecast a set of famous time series are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.