Abstract
In this paper we theoretically investigate the magnetic-field and temperature dependence of the Shubnikov-de Haas oscillations in group II-VI modulation-doped Digital Magnetic Heterostructures. We self-consistently solve the effective-mass Schrodinger equation within the Hartree approximation and calculate the electronic structure and the magneto-transport properties. Our results show i) a shift of the Shubnikov-de Haas minima to lower magnetic fields with increasing temperature, and ii) an anomalous oscillation which develops when two opposite Landau levels cross near the Fermi energy. Both of these are consistent with recent magneto-transport measurements in such heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.