Abstract

Synthetic analogs of titanate ceramics (perovskite and zirconolite) designed for use as a matrix for immobilization of high-level nuclear fuel reprocessing wastes (HLW). Such ceramics have been prepared by SHS method from a mixture of titanate ceramics and non-radioactive model oxides. Synthesis conditions have been optimized. The synthesized low-porosity cylindrical compacts exhibited a high strength and low rate for leaching Cs, Sr, Y, Ce, and La in bidistilled water. The phase composition and microstructure of synthesized products have been characterized. The immobilization of Cs was found to be accompanied by a marked loss of this element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.