Abstract

Neuromorphic object recognition with spiking neural networks (SNNs) is the cornerstone of low-power neuromorphic computing. However, existing SNNs suffer from significant latency, utilizing 10 to 40 timesteps or more, to recognize neuromorphic objects. At low latencies, the performance of existing SNNs is drastically degraded. In this work, we propose the Shrinking SNN (SSNN) to achieve low-latency neuromorphic object recognition without reducing performance. Concretely, we alleviate the temporal redundancy in SNNs by dividing SNNs into multiple stages with progressively shrinking timesteps, which significantly reduces the inference latency. During timestep shrinkage, the temporal transformer smoothly transforms the temporal scale and preserves the information maximally. Moreover, we add multiple early classifiers to the SNN during training to mitigate the mismatch between the surrogate gradient and the true gradient, as well as the gradient vanishing/exploding, thus eliminating the performance degradation at low latency. Extensive experiments on neuromorphic datasets, CIFAR10-DVS, N-Caltech101, and DVS-Gesture have revealed that SSNN is able to improve the baseline accuracy by 6.55% ~ 21.41%. With only 5 average timesteps and without any data augmentation, SSNN is able to achieve an accuracy of 73.63% on CIFAR10-DVS. This work presents a heterogeneous temporal scale SNN and provides valuable insights into the development of high-performance, low-latency SNNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.