Abstract

The viscosity of the initial monomer mixture and the chemical structure of the monomers are both important variables in the kinetic behavior of resin composites. This paper aims to determine the effect of opaque mineral fillers and monomer ratios on the shrinkage strain-rate and time at maximum shrinkage strain (Smax) rate, of experimental composites based on (BisGMA/TEGDMA) monomers. Polymerization shrinkage and the degree of conversion (DC) of resin composites are closely related manifestations of the same process. The proportionality of these two properties was also investigated by studying the variation of the ratio: (total shrinkage strain/degree of conversion): (Smax/DC), as a function of mineral filler contents and monomer ratios.Resin composites were prepared by mixing different monomer ratios of (BisGMA/TEGDMA) with camphoroquinone and dimethyl aminoethyl methacrylate (DMAEMA) as photo-initiator system. Five different radiopacifying filler agents: La2O3, BaO, BaSO4,·SrO and ZrO2 at various volume fractions ranging from 0 to 80wt.% were added. The samples were cured at ca. 550mW/cm2. The shrinkage strain-rate, was calculated from the derivative of shrinkage strain using numerical differentiation. The shrinkage strain was measured by the bonded-disk technique at room temperature. Degree of conversion was calculated using FTIR/ATR spectroscopy.The results revealed that the fraction of opaque filler had no significant effect on the shrinkage strain-rate and on the time at maximum shrinkage strain-rate but these two parameters are closely related to the monomer ratios and viscosity of the organic matrix. The results have confirmed the proportionality of the shrinkage strain and DC and showed that the filler contents and monomer ratios would not affect this proportionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call