Abstract

We evaluated several methods for computing shrinkage estimates of the genomic relationship matrix and demonstrated their potential to enhance the reliability of genomic estimated breeding values of training set individuals. In genomic prediction in plant breeding, the training set constitutes a large fraction of the total number of genotypes assayed and is itself subject to selection. The objective of our study was to investigate whether genomic estimated breeding values (GEBVs) of individuals in the training set can be enhanced by shrinkage estimation of the genomic relationship matrix. We simulated two different population types: a diversity panel of unrelated individuals and a biparental family of doubled haploid lines. For different training set sizes (50, 100, 200), number of markers (50, 100, 200, 500, 2,500) and heritabilities (0.25, 0.5, 0.75), shrinkage coefficients were computed by four different methods. Two of these methods are novel and based on measures of LD, the other two were previously described in the literature, one of which was extended by us. Our results showed that shrinkage estimation of the genomic relationship matrix can significantly improve the reliability of the GEBVs of training set individuals, especially for a low number of markers. We demonstrate that the number of markers is the primary determinant of the optimum shrinkage coefficient maximizing the reliability and we recommend methods eligible for routine usage in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.