Abstract

This article develops an adaptive group lasso estimator for factor models with both global and group-specific factors. The global factors can affect all variables, whereas the group-specific factors are only allowed to affect the variables within a certain group. We propose a new method to separately identify the spaces spanned by global and group-specific factors, and we develop a new shrinkage estimator that can consistently estimate the factor loadings and determine the number of factors simultaneously. The asymptotic result shows that the proposed estimator can select the true model specification with a probability approaching one. An information criterion is developed to select the optimal tuning parameters in the shrinkage estimation. Monte Carlo simulations confirm our asymptotic theory, and the proposed estimator performs well in finite samples. In an empirical application, we implement the proposed method to a dataset consisting of Eurozone, United States, and United Kingdom macroeconomic variables, and we detect one global factor, one U.S.-specific factor, and one Eurozone-specific factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.