Abstract
Abstract The shrinkage characteristics of Casuarina wood in terms of the effect of fuel particle shape and size on the longitudinal, transverse, and volumetric shrinkage during devolatilization in a laboratory scale bubbling fluidized bed combustor are presented. Shrinkage of single fuel particles was measured in the longitudinal and transverse directions (with respect to the wood fibre) for various fuel particle shapes-like disc ( l / d = 0.2 – 0.6 7 ), cylinder ( l / d ∼ 1 ) and rod ( l / d = 2 – 1 0 ). The fuel particle dimensions ranged from 5 to 100 mm. The effect of the bed temperature on the shrinkage was studied by varying the bed temperature in the range of 650–850 °C. Fuel particle shape and size were found to influence the shrinkage in the two mutually perpendicular directions. The variation in the fuel particle heating rates for various shapes and sizes was found to be the cause of the variation in the shrinkage values. For all the shapes and sizes considered, the longitudinal shrinkage was found to be in the range of 6.5–24%, the transverse shrinkage from 14% to 29%, and the volumetric shrinkage from 35% to 58%. The average volumetric shrinkage was estimated to be 47% with a standard deviation of ±3.8%. Shrinkage increased negligibly with the increase in bed temperature. Increase in fuel particle density led to a decrease in volumetric shrinkage, however, this effect was not conclusive because of the effect of other factors-like chemical composition and wood type. Correlations for estimating the shrinkage coefficients in the two principal directions are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.