Abstract

In the structures where long-term behavior should be monitored and controlled, creep and shrinkage effects have to be included precisely in the analysis and design procedures. Shrinkage varies with the constituent and mixture proportions, and depends on the curing conditions and the work environment as well. Self-compacting concrete (SCC) contains combinations of various components, such as aggregate, cement, superplasticizer, water-reducing agent and other ingredients which affect the properties of the SCC including shrinkage. Hence, the realistic prediction shrinkage strains of SCC are an important requirement of the design process for this type of concrete structures. This study reviews the accuracy of the conventional concrete (CC) shrinkage prediction models proposed by the international codes of practice, including CEB-FIP (1990), ACI 209R (1997), Eurocode 2 (2001), JSCE (2002), AASHTO (2004; 2007) and AS 3600 (2009). Also, SCC shrinkage prediction models proposed by Poppe and De Schutter (2005), Larson (2007), Cordoba (2007) and Khayat and Long (2010) are reviewed. Further, a new shrinkage prediction model based on the comprehensive analysis on both of the available models, i.e., the CC and the SCC is proposed. The predicted shrinkage strains are compared with the actual measured shrinkage strains in 165 mixtures of SCC and 21 mixtures of CC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.