Abstract

Silicon-based Physically Unclonable Functions (PUFs) are a source of physical security primitive that is either implemented on ASICs or FPGAs. A class of these security primitives that provide an exponentially large set of Challenge- Response Pairs (CRPs) is termed Strong PUF. That notwithstanding, the Arbiter and Feedforward Arbiter PUFs which are traditionally Strong PUFs, are not suitable for FPGA implementation. In this paper, a newly proposed PUF architecture that improves on the existing Configurable Ring Oscillator (CRO) PUF by increasing its dynamic configurability and its level of entropy is presented. To maintain the exponentially large set of CRPs, the Shrink Generator is applied to the traditionally Weak CRO-PUF. The proposed design is implemented and tested on a spartan-6 FPGA board using the Xilinx ISE tool. The proposed architecture demonstrates a uniqueness of 50.01% and is 96.43% reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call