Abstract

Silicon-based Physically Unclonable Functions (PUFs) are a source of physical security primitive that is either implemented on ASICs or FPGAs. A class of these security primitives that provide an exponentially large set of Challenge- Response Pairs (CRPs) is termed Strong PUF. That notwithstanding, the Arbiter and Feedforward Arbiter PUFs which are traditionally Strong PUFs, are not suitable for FPGA implementation. In this paper, a newly proposed PUF architecture that improves on the existing Configurable Ring Oscillator (CRO) PUF by increasing its dynamic configurability and its level of entropy is presented. To maintain the exponentially large set of CRPs, the Shrink Generator is applied to the traditionally Weak CRO-PUF. The proposed design is implemented and tested on a spartan-6 FPGA board using the Xilinx ISE tool. The proposed architecture demonstrates a uniqueness of 50.01% and is 96.43% reliable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.