Abstract

To target benign prostatic hyperplasia (BPH) as a common urinary disease in old men, in the current study, the antiproliferative and apoptotic mechanism of SH-PRO, a mixture of Angelica gigas and Astragalus membranaceus (2:1), was evaluated in BPH-1 cells and rats with testosterone-induced BPH. Herein, SH-PRO significantly reduced the viability of BPH-1 cells and dihydrotestosterone (DHT)-treated RWPE-1 cells. Also, SH-PRO increased the sub-G1 population in BPH-1 cells and consistently attenuated the expression of pro-PARP, pro-caspase 3, Bcl2, FOXO3a, androgen receptor (AR), and prostate-specific antigen (PSA) in BPH-1 cells and DHT-treated RWPE-1 cells. Of note, SH-PRO generated reactive oxygen species (ROS) in BPH-1 cells, while ROS inhibitor N-acetyl-l-cysteine (NAC) disturbed the ability of SH-PRO to reduce the expression of pro-PARP, FOXO3a, catalase, SOD, and increase sub-G1 population in BPH-1 cells. Furthermore, oral treatment of SH-PRO significantly abrogated the weight of the prostate in testosterone-treated rats compared to BPH control with the reduced expression of AR, PSA, and DHT and lower plasma levels of DTH, bFGF, and EGF with no toxicity. Overall, these findings highlight the antiproliferative and apoptotic potential of SH-PRO via ROS-mediated activation of PARP and caspase 3 and inhibition of FOXO3a/AR/PSA signaling as a potent anti-BPH candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.