Abstract

BackgroundStructural equation modeling developed as a statistical melding of path analysis and factor analysis that obscured a fundamental tension between a factor preference for multiple indicators and path modeling’s openness to fewer indicators.DiscussionMultiple indicators hamper theory by unnecessarily restricting the number of modeled latents. Using the few best indicators – possibly even the single best indicator of each latent – encourages development of theoretically sophisticated models. Additional latent variables permit stronger statistical control of potential confounders, and encourage detailed investigation of mediating causal mechanisms.SummaryWe recommend the use of the few best indicators. One or two indicators are often sufficient, but three indicators may occasionally be helpful. More than three indicators are rarely warranted because additional redundant indicators provide less research benefit than single indicators of additional latent variables. Scales created from multiple indicators can introduce additional problems, and are prone to being less desirable than either single or multiple indicators.

Highlights

  • Structural equation modeling developed as a statistical melding of path analysis and factor analysis that obscured a fundamental tension between a factor preference for multiple indicators and path modeling’s openness to fewer indicators

  • More than three indicators are rarely warranted because additional redundant indicators provide less research benefit than single indicators of additional latent variables

  • Scales created from multiple indicators can introduce additional problems, and are prone to being less desirable than either single or multiple indicators

Read more

Summary

Discussion

Multiple indicators hamper theory by unnecessarily restricting the number of modeled latents. Using the few best indicators – possibly even the single best indicator of each latent – encourages development of theoretically sophisticated models. Additional latent variables permit stronger statistical control of potential confounders, and encourage detailed investigation of mediating causal mechanisms. Summary: We recommend the use of the few best indicators. One or two indicators are often sufficient, but three indicators may occasionally be helpful. More than three indicators are rarely warranted because additional redundant indicators provide less research benefit than single indicators of additional latent variables. Scales created from multiple indicators can introduce additional problems, and are prone to being less desirable than either single or multiple indicators

Background
Thurstone LL
14. Bollen KA

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.