Abstract

The analysis and understanding of brain characteristics often require considering region-level information rather than voxel-sampled data. Subject-specific parcellations have been put forward in recent years, as they can adapt to individual brain organization and thus offer more accurate individual summaries than standard atlases. However, the price to pay for adaptability is the lack of group-level consistency of the data representation. Here, we investigate whether the good representations brought by individualized models are merely an effect of circular analysis, in which individual brain features are better represented by subject-specific summaries, or whether this carries over to new individuals, i.e., whether one can actually adapt an existing parcellation to new individuals and still obtain good summaries in these individuals. For this, we adapt a dictionary-learning method to produce brain parcellations. We use it on a deep-phenotyping dataset to assess quantitatively the patterns of activity obtained under naturalistic and controlled-task-based settings. We show that the benefits of individual parcellations are substantial, but that they vary a lot across brain systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.