Abstract
Hypoxia represents a significant challenge to most fish, forcing the development of behavioural, physiological and biochemical adaptations to survive. It has been previously shown that inanga (Galaxias maculatus) display a complex behavioural repertoire to escape aquatic hypoxia, finishing with the fish voluntarily emerging from the water and aerially respiring. In the present study we evaluated the physiological, metabolic and biochemical consequences of both aquatic hypoxia and emersion in inanga. Inanga successfully tolerated up to 6h of aquatic hypoxia or emersion. Initially, this involved enhancing blood oxygen-carrying capacity, followed by the induction of anaerobic metabolism. Only minor changes were noted between emersed fish and those maintained in aquatic hypoxia, with the latter group displaying a higher mean cell haemoglobin content and a reduced haematocrit after 6h. Calculations suggest that inanga exposed to both aquatic hypoxia and air reduced oxygen uptake and also increased anaerobic contribution to meet energy demands, but the extent of these changes was small compared with hypoxia-tolerant fish species. Overall, these findings add to previous studies suggesting that inanga are relatively poorly adapted to survive aquatic hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.