Abstract

We consider situations where a user feeds her attributes to a machine learning method that tries to predict her best option based on a random sample of other users. The predictor is incentive-compatible if the user has no incentive to misreport her covariates. Focusing on the popular Lasso estimation technique, we borrow tools from high-dimensional statistics to characterize sufficient conditions that ensure that Lasso is incentive compatible in the asymptotic case. We extend our results to a new nonlinear machine learning technique, Generalized Linear Model Structured Sparsity estimators. Our results show that incentive compatibility is achieved if the tuning parameter is kept above some threshold in the case of asymptotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.