Abstract

Flexible fiberoptic bronchoscopy (FOB) is an invasive procedure with diagnostic and/or therapeutic purposes commonly used in critically ill patients. FOB may be complicated by desaturation, onset or worsening of the respiratory failure, and hemodynamic instability due to cardio-respiratory alterations occurring during the procedure. Increasing evidences suggest the use of high-flow through nasal cannula (HFNC) over conventional oxygen therapy (COT) in critically ill patients with acute respiratory failure (ARF). Indeed, HFNC has a rationale and possible physiologic advantages, even during FOB. However, to date, evidences in favor of HFNC over COT or continuous positive airway pressure (CPAP) or non-invasive ventilation (NIV) during FOB are still weak. Nonetheless, in critically ill patients with hypoxemic ARF, the choice of the oxygenation strategy during a FOB is challenging. Based on a review of the literature, HFNC may be preferred over COT in patients with mild to moderate hypoxemic ARF, without cardiac failure or hemodynamic instability. On the opposite, in critically ill patients with more severe hypoxemic ARF or in the presence of cardiac failure or hemodynamic instability, CPAP or NIV, applied with specifically designed interfaces, may be preferred over HFNC.

Highlights

  • Flexible fiberoptic bronchoscopy (FOB) is an invasive procedure with diagnostic and/or therapeutic purposes, used since a long time in patients with airway or lung parenchyma disorders of varying etiology and severity

  • FOB is commonly performed to remove plugs of secretions occluding the airway in the presence of abundant secretions or ineffective cough, or in association with the bronchoalveolar lavage (BAL) to diagnose a vast array of lung diseases [1]

  • Cardio-respiratory alterations during FOB When performing FOB, the clinician should be aware of some occurring alterations of respiratory mechanics and hemodynamic status (Table 1)

Read more

Summary

Background

Flexible fiberoptic bronchoscopy (FOB) is an invasive procedure with diagnostic and/or therapeutic purposes, used since a long time in patients with airway or lung parenchyma disorders of varying etiology and severity. HFNC generates a small amount of positive pharyngeal airway pressure during expiration depending on the flow rate, the upper airway anatomy, the breathing through the nose or mouth, and the size of the cannula in relation to the nostrils [13] This low expiratory pressure translates into a small alveolar distending pressure that improves the end-expiratory lung volume and oxygenation in critically ill patients with different conditions of acute respiratory failure (ARF) [17–20]. As mentioned above, FOB induces cardiovascular alterations, which may precipitate fragile heart conditions At this regard, CPAP and NIV provide a positive airway pressure through the entire respiratory cycle, while HFNC does not [30]. Caution must be posed when the patient is receiving NIV through a mask with intentional leaks through the exhalation port and single-branch circuit: the exhaled air jet could reach a distance of 916 mm [34]

Conclusions
Findings
Availability of data and materials Not applicable
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.