Abstract

"Is entanglement monogamous?" asks the title of a popular article [B. Terhal, IBM J. Res. Dev. 48, 71 (2004)], celebrating C. H. Bennett's legacy on quantum information theory. While the answer is affirmative in the qualitative sense, the situation is less clear if monogamy is intended as a quantitative limitation on the distribution of bipartite entanglement in a multipartite system, given some particular measure of entanglement. Here, we formalize what it takes for a bipartite measure of entanglement to obey a general quantitative monogamy relation on all quantum states. We then prove that an important class of entanglement measures fail to be monogamous in this general sense of the term, with monogamy violations becoming generic with increasing dimension. In particular, we show that every additive and suitably normalized entanglement measure cannot satisfy any nontrivial general monogamy relation while at the same time faithfully capturing the geometric entanglement structure of the fully antisymmetric state in arbitrary dimension. Nevertheless, monogamy of such entanglement measures can be recovered if one allows for dimension-dependent relations, as we show explicitly with relevant examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.