Abstract

IntroductionSingle-dose rotavirus vaccines, which are used by a majority of countries, are some of the largest-sized vaccines in immunization programs, and have been shown to constrain supply chains and cause bottlenecks. Efforts have been made to reduce the size of the single-dose vaccines; however, with two-dose, five-dose and ten-dose options available, the question then is whether using multi-dose instead of single-dose rotavirus vaccines will improve vaccine availability. MethodsWe used HERMES-generated simulation models of the vaccine supply chains of the Republic of Benin, Mozambique, and Bihar, a state in India, to evaluate the operational and economic impact of implementing each of the nine different rotavirus vaccine presentations. ResultsAmong single-dose rotavirus vaccines, using Rotarix RV1 MMP (multi-monodose presentation) led to the highest rotavirus vaccine availability (49–80%) and total vaccine availability (56–79%), and decreased total costs per dose administered ($0.02-$0.10) compared to using any other single-dose rotavirus vaccine. Using two-dose ROTASIIL decreased rotavirus vaccine availability by 3–6% across each supply chain compared to Rotarix RV1 MMP, the smallest single-dose vaccine. Using a five-dose rotavirus vaccine improved rotavirus vaccine availability (52–92%) and total vaccine availability (60–85%) compared to single-dose and two-dose vaccines. Further, using the ten-dose vaccine led to the highest rotavirus vaccine availability compared to all other rotavirus vaccines in both Benin and Bihar. ConclusionOur results show that countries that implement five-dose or ten-dose rotavirus vaccines consistently reduce cold chain constraints and achieve higher rotavirus and total vaccine availability compared to using either single-dose or two-dose rotavirus vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.