Abstract

Bone mineral density (BMD) is the most widely used parameter for measuring bone strength. Indeed, the World Health Organization definition of osteoporosis is based solely on the BMD as measured by dual energy X-ray absorptiometry (DEXA). As our understanding of the factors contributing to bone strength has improved in recent years, this might need to be re-visited. In this review, we have outlined the recent advances in our understanding of the structural health of the bone, specifically how whole bone geometry, micro-architecture and tissue properties are all factors that determine bone strength. We have outlined the importance of micro-crack formation and the pathways that could result following micro-crack formation. We have also presented evidence that makes a case for seeking an alternative technique to DEXA that could potentially improve/augment our ability to assess osteoporosis. Vibrational spectroscopic techniques such as Raman spectroscopy and Fourier transform infrared spectroscopy are evolving as important modalities that have the capability to evaluate all the determinants of bone strength qualitatively and quantitatively in a spatially resolved manner that could potentially provide a much more accurate assessment of bone health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.