Abstract
We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (F approximately 10(-2)) in the shuttling regime even in the quantum limit, confirming that shuttling is universally a low noise phenomenon. In approaching the semiclassical limit, the Fano factor shows a giant enhancement (F approximately 10(2)) at the shuttling threshold, consistent with predictions based on phase-space representations of the density matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.