Abstract

Amphibole and mica lamprophyres and related dykes of Tertiary age from the Kreuzeck Mountains, Central Alps, Austria, have been investigated petrographically and geochemically. They intrude a sequence of early Palaeozoic metapelites, greenstones and amphibolites to the north of the Cretaceous Periadriatic Lineament, a major suture zone of 700 km E-W extent. The dykes are spatially associated with Sb, W, Hg, and Cu-Ag-Au deposits. Most lamprophyres are characterized by primitive chemistry (mg-numbers > 60 and Cr > 200 ppm) and have high contents of LIL elements (K, Rb, Sr and Ba). Geochemically, five different subgroups of calcalkaline/shoshonitic to alkaline affinity can be distinguished. These are: Group 1, amphibole-bearing shoshonitic lamprophyres (0.5–1.0 wt% Ti02, Zr 20); Group 3, alkaline lamprophyres (1.5–2.1 wt% TiO2, Zr > 250 ppm, Nb > 30 ppm, Ba/Rb 10–25); Group 4, low-MgO alkaline lamprophyres (∼ 2.5 wt% TiO2, mg-number < 57, Nb ∼ 20 ppm, Ba/Rb ∼ 20); Group 5, calc-alkaline basaltic dykes (∼ 2.2 wt% TiO2, mg-number <55, Nb < 10 ppm, Ba/Rb < 10). Group 2,3 and 4 dykes have NE-SW orientations and are of Oligocene age (K-Ar age 27–32 Ma); Group 1 and 5 dykes are of Lower Oligocene age (K-Ar age 36 Ma) but have mostly E-W orientations. The Kreuzeck lamprophyres were generated in post-collisional magmatic events, which were probably linked to extensional tectonics following oblique continent-continent collision between the African and Eurasian Plates during the Eocene. Group 1, 2 and 5 dyke rocks have typical calc-alkaline geochemical signatures indicating that they represent partial melting products of subduction-modified lithosphere. Group 3 and 4 alkaline lamprophyres have geochemical features transitional between calc-alkaline and within-plate alkaline igneous rocks (e.g. Ba/Nb ∼ 30–70) indicating that their mantle source-region includes both subduction-modified lithospheric and OIB-type asthenospheric components. There is no apparent relationship between mineralization in the Kreuzeck region, thought to be of Ordovician-Devonian age, and much later lamprophyre intrusion. Alteration of the dykes by late-magmatic fluids has resulted in the formation of secondary minerals, and has occasionally led to increased Au and PGE values in the 10–35 ppb range particularly in close proximity to Cu-Ag-Au deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call