Abstract

The linear stability of thin vortex rings are studied by short-wavelength stability analysis. The modified Hill–Schrödinger equation for vortex rings, which incorporates curvature effect, is derived. It is used to evaluate growth rates analytically. The growth rates are also evaluated by numerical calculation and they agree well with analytical values for small ε which is the ratio of core radius to ring radius. Two types of vortex rings are considered: Kelvin’s vortex ring and a Gaussian vortex ring. For Kelvin’s vortex ring the maximum first-order growth rate is found to be 165256ε. For the Gaussian vortex ring the first-order growth rate is large in the skirts of the vortex core. The first-order instability is significant for both vortex rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.