Abstract
Aerosols reduce the surface reaching solar flux by scattering the incoming solar radiation out to space. Various model studies on climate change suggest that surface cooling induced by aerosol scattering is the largest source of uncertainty in predicting the future climate. In the present study measurements of aerosol optical depth (AOD) and its direct radiative forcing efficiency has been presented over a typical tropical urban environment namely Hyderabad during December, 2003. Measurements of AOD have been carried out using MICROTOPS-II sunphotometer, black carbon aerosol mass concentration using Aethalometer, total aerosol mass concentration using channel Quartz Crystal Microbalance (QCM) Impactor Particle analyser and direct normal solar irradiance using Multifilter Rotating Shadow Band Radiometer (MFRSR). Diurnal variation of AOD showed high values during afternoon hours. The fraction of BC estimated to be ∼9% in the total aerosol mass concentration over the study area. Results of the study suggest −62.5 Wm −2 reduction in the ground reaching shortwave flux for every 0.1 increase in aerosol optical depth. The results have been discussed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.