Abstract

In this work we analyzed the blinking statistics data of single CdSe/ZnS quantum dots at very short times to test some predictions of the diffusion-controlled electron transfer (DCET) model. Using autocorrelation function (ACF) approach we could extract the exponent of the inverse power-law blinking statistics down to 1 micros. Such an approach also minimizes human subjectivity in choosing a bin time and an on-off threshold. We showed that the observed stretched exponential decay in the ACF and its relationship to the blinking statistics are consistent with the DCET model, and we set an upper bound for the characteristic time constant t(c).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.