Abstract

Critical relaxation from a low-temperature fully ordered state of Fe2/V13 iron-vanadium magnetic superlattice models has been studied using the method of short-time dynamics. Systems with three variants of the ratio R of inter- to intralayer exchange coupling have been considered. Particles with N = 262144 spins have been simulated with periodic boundary conditions. Calculations have been performed using the standard Metropolis algorithm of the Monte Carlo method. The static critical exponents of magnetization and correlation radius, as well as the dynamic critical exponent, have been calculated for three R values. It is established that a small decrease in the exchange ratio (from R = 1.0 to 0.8) does not significantly influence the character of the short-time dynamics in the models studied. A further significant decrease in this ratio (to R = 0.01), for which a transition from three-dimensional to quasi-twodimensional magnetism is possible, leads to significant changes in the dynamic behavior of iron-vanadium magnetic superlattice models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call