Abstract

ABSTRACTShort-term wind speed prediction is of importance for power grids. It can mitigate the disadvantageous impacts of wind farms on power systems and enhance the competitiveness of wind power in electricity markets. A short-term wind speed prediction model is proposed. Many useless neurons of incremental extreme learning machine have little influences on the final output, at the same time, reduce the efficiency of the algorithm. In order to solve this problem, based on error minimized extreme learning machine, an improved particle swarm optimization algorithm is proposed to decrease the number of useless neurons, achieve the goal of reducing the network complexity and improving the efficiency of the algorithm. The stability and convergence of the algorithm are proved. The actual short-term wind speed time series is used as the research object. Multistep prediction simulation of short-term wind speed is performed out. Compared with the other prediction models, the simulation results show that the prediction model proposed in this paper reduces the training time of the model and decreases the number of hidden layer nodes. The prediction model has higher prediction accuracy and reliability, meanwhile improve the prediction performance indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.