Abstract

Wind speed interval prediction is playing an increasingly important role in wind power production. The intermittent and fluctuant characteristics of wind power make high-quality prediction interval challenging. In this paper, a novel hybrid model based on a gated recurrent unit neural network and variational mode decomposition is proposed for wind speed interval prediction. Initially, variational mode decomposition is employed to decompose the complex wind speed time series into simplified modes. Interval prediction model and a point prediction model based on a gated recurrent unit neural network are designed to conduct interval prediction in primary mode and point prediction in rest modes, respectively, before the composition and construction of the prediction interval. Then, an error prediction model based on a gated recurrent unit neural network is proposed to enhance the model performance by error correction. Eight cases from two wind fields are used to test and verify the proposed method. The results indicate that the proposed method is a highly qualified method that has a much higher prediction interval coverage probability and narrower prediction interval width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.