Abstract

The derivation of an apical endpoint point of departure (POD) from animal-intensive testing programs has been the traditional cornerstone of human health risk assessment. Replacement of in vivo chronic studies with novel approaches, such as toxicogenomics, holds promise for future alternative testing paradigms that significantly reduce animal testing. We hypothesized that a toxicogenomic POD following a 14 day exposure in the rat would approximate the most sensitive apical endpoint POD derived from a battery of chronic, carcinogenicity, reproduction and endocrine guideline toxicity studies. To test this hypothesis, we utilized myclobutanil, a triazole fungicide, as a model compound. In the 14 day study, male rats were administered 0 (vehicle), 30, 150, or 400 mg/kg/day myclobutanil via oral gavage. Endpoints evaluated included traditional apical, hormone, and liver and testis transcriptomic (whole genome RNA sequencing) data. From the transcriptomic data, liver and testis biological effect POD (BEPOD) values were derived. Myclobutanil exposure for 14 days resulted in increased liver weight, altered serum hormones, liver histopathology, and differential gene expression in liver and testis. The liver and testis BEPODs from the short-term study were 22.2 and 25.4 mg/kg/day, respectively. These BEPODs were approximately an order of magnitude higher than the most sensitive apical POD identified from the two year cancer bioassay based on testis atrophy (1.4 mg/kg/day). This study demonstrates the promise of using a short-term study BEPOD to derive a POD for human health risk assessment while substantially reducing animal testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call