Abstract

Short-term wind speed prediction is an essential task for wind resource and wind energy planning. However, most of this literature does not take into account the spatio-termporal correlation of wind data from the geographical field. For this reason, we propose an integrated spatio-temporal kriging and functional kriging strategy to exploit such spatio-temporal correlation into the wind speed prediction. First, the deterministic trend component in wind data is estimated to be removed. The residuals are used for spatio-temporal modeling and prediction. Based on the spatio-temporal kriging framework, four spatio-temporal covariance models (product-sum model, separable exponential product model, separable and nonseparable Gneiting models) are considered which describe the spatio-temporal correlation of wind data. In particular, the flexibility of using the nonseparable Gneiting model is highlighted. More specifically, four spatio-temporal random fields are modeled from the 12 wind monitoring stations over Ireland. We also use an involved weighted least squares method for estimating parameters of the four covariance models involved in the spatio-temporal kriging strategy. We apply the fitted covariance models to generate day-ahead wind speed predictions at both observed and nonobserved locations where wind station already exist but also to nearby locations. Leave-one-out cross-validation is applied to check the significance of the difference among the four models, these spatio-temporal ordinary kriging (STOK), functional ordinary kriging (FOK) and autoregressive integrated moving average (ARIMA) methods are compared for day-ahead wind speed predictions. Forecasting results indicate that the predicting accuracy is improved almost 33.5% using FOK compared with three approaches which confirm the effectiveness of the functional kriging method in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call