Abstract
A short-term solar flare prediction model is built using predictor teams rather than an individual set of predictors. The information provided by the set of predictors could be redundant. So it is necessary to generate subsets of predictors which can keep the information constant. These subsets are called predictor teams. In the framework of rough set theory, predictor teams are constructed from sequences of the maximum horizontal gradient, the length of neutral line and the number of singular points extracted from SOHO/MDI longitudinal magnetograms. Because of the instability of the decision tree algorithm, prediction models generated by the C4.5 decision tree for different predictor teams are diverse. The flaring sample, which is incorrectly predicted by one model, can be correctly forecasted by another one. So these base prediction models are used to construct an ensemble prediction model of solar flares by the majority voting rule. The experimental results show that the predictor team can keep the distinguishability of the original set, and the ensemble prediction model can obtain better performance than the model based on the individual set of predictors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.