Abstract

Seagrass meadows are highly productive ecosystems that provide ecosystem services to the coastal zone but are declining globally, particularly due to anthropogenic activities that reduce the quantity of light reaching seagrasses, such as dredging, river discharge and eutrophication. Light quality (the spectral composition of the light) is also altered by these anthropogenic stressors as the differential attenuation of wavelengths of light is caused by materials within the water column. This study addressed the effect of altered light quality on different life-history stages of the seagrass Posidonia australis, a persistent, habitat-forming species in Australia. Aquarium-based experiments were conducted to determine how adult shoots and seedlings respond to blue (peak λ = 451 nm); green (peak λ = 522 nm); yellow (peak λ = 596 nm) and red (peak λ = 673 nm) wavelengths with a control of full-spectrum light (λ = 400 – 700 nm, at 200 μmol photons m-2 s-1). Posidonia australis adults did not respond to changes in light quality relative to full-spectrum light, demonstrating a capacity to obtain enough photons from a range of wavelengths across the visible spectrum to maintain short-term growth at high irradiances. Posidonia australis seedlings (<4 months old) grown in blue light showed a significant increase in xanthophyll concentrations when compared to plants grown in full-spectrum, demonstrating a pigment acclimation response to blue light. These results differed significantly from negative responses to changes in light quality recently described for Halophila ovalis, a colonizing seagrass species. Persistent seagrasses such as P. australis, appear to be better at tolerating short-term changes in light quality compared to colonizing species when sufficient PPFD is present.

Highlights

  • Terrestrial plants detect the light environment and modulate growth and development according to both light quality and light quantity (Photosynthetic Photon Flux Density, or PPFD) (Fankhauser and Chory, 1997; Whitelam and Halliday, 2008)

  • The aim of this study was to determine whether P. australis responds to specific wavelengths of light and whether any responses are consistent across adult and seedling life history stages

  • For the blue v red comparison, plants grown under blue light had higher α, chl a:b values and rhizome starch compared to those grown under red light, while root productivity was higher in the red light treatment

Read more

Summary

Introduction

Terrestrial plants detect the light environment and modulate growth and development according to both light quality (the composition of the wavelength-specific radiation within the visible spectrum 400 – 700 nm) and light quantity (Photosynthetic Photon Flux Density, or PPFD) (Fankhauser and Chory, 1997; Whitelam and Halliday, 2008). Degradation in water quality (caused by a range of anthropogenic activities, i.e., eutrophication, sediment loading and dredging) that alters light throughout the water column is highlighted as a major contributor to global seagrass loss (Erftemeijer and Lewis, 2006; Waycott et al, 2009; Marbà et al, 2014) and the loss of these functions and services. These activities have the dual effect of reducing the PPFD and altering the spectral quality of light. Chromophoric dissolved organic matter (CDOM) expelled from rivers and estuaries strongly absorbs short-wave radiation, leading to a yellow and red-shifted light field in shallow coastal and estuarine waters (Kirk, 1994)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call