Abstract
Accurate short-term power load forecasting is crucial to maintaining a balance between energy supply and demand, thus minimizing operational costs. However, the intrinsic uncertainty and non-linearity of load data substantially impact the accuracy of forecasting results. To mitigate the influence of these uncertainties and non-linearity in electric load data on the forecasting results, we propose a hybrid network that integrates variational mode decomposition with a temporal convolutional network (TCN) and a bidirectional gated recurrent unit (BiGRU). This integrated approach aims to enhance the accuracy of short-term power load forecasting. The method was validated on load datasets from Singapore and Australia. The MAPE of this paper’s model on the two datasets reached 0.42% and 1.79%, far less than other models, and the R2 reached 98.27% and 97.98, higher than other models. The experimental results show that the proposed network exhibits a better performance compared to other methods, and could improve the accuracy of short-term electricity load forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.