Abstract

There is a strong political will to decrease CO2 emissions. Although the steel industry only accounts for some 5% of worldwide CO2 emissions (which totalled 1,200 million tonnes per annum in the late 1990s), it will be strongly affected by this. The EU, for example, is putting up strong economic incentives for reductions. This is taking place at a time when demand for steel products is greater than ever. To radically change existing processes and production routes to decrease the CO2 emissions would be extremely expensive, even if it were possible. Nevertheless, many of the solutions which have been discussed seem to go in this direction. The other alternative discussed seems to be the creation of process solutions and alterations that lead to a focusing of CO2 streams, i.e., much higher CO2 concentrations in flue gases than today, for entrapment of the CO2 so that it is not discharged into the atmosphere. These solutions are feasible, but expensive. However, there exists today a number of solutions and technologies which, if fully implemented, could substantially decrease CO2 emissions without seriously altering current methods of operation; they are short-term viable solutions. The present paper reviews and discusses such technologies, throughout the steel production paths. If these solutions are fully implemented, the combined impact on CO2 emissions from the steel industry worldwide is estimated to be a reduction of 100–150 million tonnes of CO2 per annum, i.e., current emissions can be reduced by some 8–10% within a relatively short time span.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call