Abstract

Time-dependent Zn and Cd accumulation and metallothionein like protein (MTLP) induction in the digestive glands of mussels, Perna virdis, were measured under different exposure conditions. The initial uptake rate at start of chase (ρ 0) and mean residence time (τ) were calculated to determine the physiological response of organisms and their potential detoxification mechanisms. It was found that in digestive glands, Zn had obviously higher ρ 0 and shorter mean residence time than Cd, indicating that these two metals had different accumulation dynamics even though they were very close in the periodic element table. MTLP levels in digestive glands varied from 0.51 to 1.05 μg/g ww (wet weight). The MTLP level increased continuously when mussels were exposed to low and middle levels of Zn and Cd media, and reached maximal levels at day 4, then decreased when they were exposed to high level Zn and Cd solutions. With regard to the fraction of Zn and Cd accumulated in the digestive glands, the ratios of soluble metal to total metal decreased continuously after exposure in low and middle levels of Zn and Cd media, and decreased continuously in the first 4 days and then to level off when mussels were exposed to media with high concentration of Zn and Cd. Results suggested that both MTLP induction and metal insolubilization were detoxification processes in digestive glands of mussels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.