Abstract

The impact of short-term exposure to environmental factors such as temperature, relative humidity (RH), and fine particulate matter (PM2.5) on chronic obstructive pulmonary disease (COPD) remains unclear. The objective of this study is to investigate PM2.5 as a mediator in the relationship between short-term variations in RH and temperature and COPD severity. A cross-sectional study was conducted on 930 COPD patients in Taiwan from 2017 to 2022. Lung function, COPD Assessment Test (CAT) score, and modified Medical Research Council (mMRC) dyspnea scale were assessed. The mean and differences in 1-day, 7-day, and 30-day individual-level exposure to ambient RH, temperature, and PM2.5 were estimated. The associations between these factors and clinical outcomes were analyzed using linear regression models and generalized additive mixed models, adjusting for age, sex, smoking, and body mass index. In the total season, increases in RH difference were associated with increases in forced expiratory volume in 1 s (FEV1) / forced vital capacity (FVC), while increases in temperature difference were associated with decreases in FEV1 and FEV1/FVC. Increases in PM2.5 mean were associated with declines in FEV1. In the cold season, increases in temperature mean were associated with decreases in CAT and mMRC scores, while increases in PM2.5 mean were associated with declines in FEV1, FVC, and FEV1/FVC. In the warm season, increases in temperature difference were associated with decreases in FEV1 and FEV1/FVC, while increases in RH difference and PM2.5 mean were associated with decreases in CAT score. PM2.5 fully mediated the associations of temperature mean with FEV1/FVC in the cold season. In conclusion, PM2.5 mediates the effects of temperature and RH on clinical outcomes. Monitoring patients during low RH, extreme temperature, and high PM2.5 levels is crucial.Capsule of findingsThe significance of this study is that an increase in ambient RH and temperature, as well as PM2.5 exposure, were significantly associated with changes in lung function, and clinical symptoms in these patients. The novelty of this study is that PM2.5 plays a mediating role in the association of RH and temperature with COPD clinical outcomes in the short term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.