Abstract
A novel short-term load forecasting method based on the lazy learning (LL) algorithm is proposed. The LL algorithm's input data are electrical load information, daily electricity consumption patterns, and temperatures in a specified region. In order to verify the ability of the proposed method, a load forecasting problem, using the Pennsylvania-New Jersey-Maryland Interconnection electrical load data, is carried out. Three LL models are proposed: constant, linear, and mixed models. First, the performances of the 3 developed models are compared using the root mean square error technique. The best technique is then selected to compete with the state-of-the-art neural network (NN) load forecasting models. A comparison is made between the performances of the proposed mixed-model LL as the superior LL model and the radial basis function and multilayer perceptron NN models. The results reveal significant improvements in the precision and efficiency of the proposed forecasting model when compared with the NN techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.