Abstract
Load forecasting is basic for building up a power supply strategy to enhance the reliability of the power line and gives optimal load scheduling to numerous developing nations where the demand can be expanded with high development rate. Short-Term Electric Load Forecast (STLF) is very important because it can be used to preserve optimum behaviour in daily operations of electrical system. For this purpose, Autoregressive Integrated Moving Average Model (ARIMA) is utilised which is a linear prediction procedure. Neural networks have capability to model complex and nonlinear relationship. The aim of this paper is to explain how neural network is able to change linear ARIMA model to create short-term load forecasts. The hybrid methodology, combining ARIMA and ANN model, will purposely take advantages of the unique power of ARIMA and ANN models in linear and nonlinear domains, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.