Abstract

Short term load forecasting (STLF) has an essential role in the operation of electric power systems. Although artificial neural networks (ANN) based predictors are more widely used for STLF in recent years, there still exist some difficulties in choosing the proper input variables and selecting an appropriate architecture of the networks. A novel approach is proposed for STLF by combining mutual information (MI) and ANN. The MI theory is first briefly introduced and employed to perform input selection and determine the initial weights of ANN. Then ANN module is trained using historical daily load and weather data selected to perform the final forecast. To demonstrate the effectiveness of the approach, short-term load forecasting was performed on the Hang Zhou Electric Power Company in China, and the testing results show that the proposed model is feasible and promising for load forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.