Abstract

The use of nitrogen-fixing trees such as black alder ( Alnus glutinosa L. Gaertn.) as forest silvicultural tools has recently been recognized. The potential benefit of black alder in silvicultural practices may be reduced by nitrate fertilization. Fifteen-month-old, nodulated, black alder rooted cuttings were fertilized for 6 days with 0, 7.5 or 15 mM NO 3 to determine the influence of nitrate on acetylene reduction, nodule respiration and net photosynthesis. Acetylene reduction, net photosynthesis and nodule respiration were measured on the second, fourth and sixth days of nitrate application. Nitrate treatment significantly reduced acetylene reduction and nodule respiration by day 4. Acetylene reduction was 75% lower and nodule respiration 36% lower for the 15 mM NO 3 treatment when compared to that of the control treatment. By day 6, net photosynthesis and nodule respiration were significantly reduced by 29 and 59%, respectively, for seedlings treated with 15 mM NO 3. This study suggests that nitrate fertilization has a profound influence on nitrogenase activity and that nitrogen-fixing tree species may respond to nitrate fertilization by shifting photosynthetic rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call