Abstract

Forecasting of natural gas consumption has been essential for natural gas companies, customers, and governments. However, accurate forecasting of natural gas consumption is difficult, due to the cyclical change of the consumption and the complexity of the factors that influence the consumption. In this work, we constructed a hybrid artificial intelligence (AI) model to predict the short-term natural gas consumption and examine the effects of the factors in the consumption cycle. The proposed model combines factor selection algorithm (FSA), life genetic algorithm (LGA), and support vector regression (SVR), namely, as FSA-LGA-SVR. FSA is used to select factors automatically for different period based on correlation analysis. The LGA optimized SVR is utilized to provide the prediction of time series data. To avoid being trapped in local minima, the hyper-parameters of SVR are determined by LGA, which is enhanced due to newly added “learning” and “death” operations in conventional genetic algorithm. Additionally, in order to examine the effects of the factors in different period, we utilized the recent data of three big cities in Greece and divided the data into 12 subseries. The prediction results demonstrated that the proposed model can give a better performance of short-term natural gas consumption forecasting compared to the estimation value of existing models. Particularly, the mean absolute range normalized errors of the proposed model in Athens, Thessaloniki, and Larisa are 1.90%, 2.26%, and 2.12%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.