Abstract

Short-term flow and water temperature fluctuations in Sagami Bay were examined using mooring and hydrographic data observed during the non-large-meander path (NLM) of the Kuroshio. In the surface layer (<150m), the flow fluctuation is predominant and is excited by the sudden strong eastward flow with speeds greater than 20cms−1 in the central part of the bay. This flow is a part of an intrusion of Kuroshio water via the Oshima West Channel into the bay and/or a cyclonic circulation in the northern part of the bay. The cyclonic circulation, which is approximately balanced under the geostrophic flow relationship, is mainly generated or enhanced by the intrusion, which is accompanied by eastward propagation of the small meander of the Kuroshio south of Japan during the transition from the nearshore non-large-meander path (nNLM) to the offshore non-large-meander path (oNLM), regardless of season. The water temperature fluctuation in the subsurface layer (∼150m) is caused by upwelling of cold deeper water and is closely related to the eastward flow fluctuations in the surface layer in the central part of the bay. Our analysis leads us the conclusion that the upwelling occurs as the response of the subsurface density field to the surface flow field under the Earth’s rotation. Additionally, the intrusion of Kuroshio water via the Oshima West Channel tends to cause, not only cyclonic circulation and upwelling in the northern part of the bay, but also the Kyucho, which is the coastal density current under the Earth’s rotation, in the bay’s coastal area during the non-large-meander path (NLM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call