Abstract

This study presents a mixed-integer linear programming (MILP) model to solve the short-term expansion planning problem of radial electrical distribution systems. The proposed model defines the construction of new circuits, the reconductoring of existing circuits, the allocation of capacitor banks (as well as the type and the number of units in operation) and the allocation of voltage regulators to minimise the total annualised investment and operation costs. In the proposed formulation, the steady-state operation of the radial distribution system is mathematically modelled through linear expressions. The use of an MILP model guarantees convergence to optimality by using existing classical optimisation tools. The model was implemented in the mathematical modelling language AMPL and solved using the commercial solver CPLEX. A 54-node test system and 201-node real distribution system were used to demonstrate the accuracy of the mathematical model, as well as the efficiency of the proposed solution technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.