Abstract

Forecasting oil prices remains an important empirical issue. This paper compares three forecasts of short-term oil prices using two compumetric methods and naive random walk. Compumetric methods use model specifications generated by computers with limited human intervention. Users are responsible only for selecting the appropriate set of explanatory variables. The compumetric methods employed here are genetic programming and artificial neural networks. The variable to forecast is monthly US imports FOB oil prices. Each method is used to forecast one and three months ahead. The results suggest that neural networks deliver better predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.