Abstract

Woods Lake and Cranberry Pond, two chronically acidic lakes located in the Adirondack region of New York, USA, were intensively monitored following CaCO3 treatment in May 1985 to evaluate the mechanisms controlling short-term changes in water column chemistry. Immediately following base application (24 h), both lakes responded like systems closed to atmospheric CO2, because the dissolution of very small CaCO3 particles (median diameter 2 μm) exceeded the rate of atmospheric CO2 intrusion. Rapid dissolution of CaCO3 coupled with very low concentrations of dissolved inorganic carbon (DIC) prior to treatment, resulted in pH increases in the upper mixed waters from 4.9 to 9.4 in Woods Lake and from 4.6 to 9.1 in Cranberry Pond, as waters readily became saturated with CaCO3. pH increases were accompanied by stoichiometric increases in dissolved Ca2+, acid neutralizing capacity (ANC), and DIC. Following this initial perturbation, the upper mixed waters equilibrated with atmospheric CO2 over a 4 wk period, facilitating additional release of dissolved Ca2+ and ANC due to dissolution of suspended CaCO3. The amount of CaCO3 that dissolved during the 4 wk immediately following treatment, calculated from Ca2+ budgets, was very high; 86% in Woods Lake and 79% in Cranberry Pond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call