Abstract

Particulate air pollution is a continuing challenge in China, and its adverse effects on chronic obstructive pulmonary disease (COPD) have been widely reported. However, epidemiological evidence on the associations between size-fractionated particle number concentrations (PNCs) and COPD mortality is limited. In this study, we utilized a time-series approach to investigate the associations between PNCs of particles at 0.25–10 μm in diameter and COPD mortality in Shanghai, China. Quasi-Poisson regression generalized additive models were applied to evaluate these associations, with adjustment of time trend, day of week, holidays, temperature and relative humidity. Stratification analyses were performed by season and gender. There were a total of 3238 deaths due to COPD during the study period. We found that daily COPD deaths were significantly associated with PNCs of particles <0.5 μm, and the magnitude of associations increased with decreasing particle size. An interquartile range (IQR) increase in PNC0.25—0.28, PNC0.28—0.3, PNC0.3—0.35, PNC0.35—0.4, PNC0.4—0.45 and PNC0.45—-0.5 was associated with increments of 7.51% (95%CI: 2.45%, 12.81%), 7.22% (95%CI: 2.16%, 12.53%), 6.95% (95%CI: 1.81%, 12.35%), 6.26% (95%CI: 1.25%, 11.52%), 5.24% (95%CI: 0.56%, 10.13%) and 4.15% (95%CI: 0.14%, 8.32%), respectively. The associations remained robustness after controlling for the mass concentrations of gaseous air pollutants. In stratification analyses, significant associations between PNCs and COPD mortality were observed in the cold seasons, and in males. Our results suggested that particles <0.5 μm in diameter might be most responsible for the adverse effects of particulate air pollution on COPD mortality, and COPD patients are more susceptible to PM air pollution in the cold seasons, especially for males.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call